

ingenia dsPIC bootloader
User’s Guide

version 1.1
03/02/06

© 2005, ingenia-cat S.L.

ingenia dsPIC bootloader Guide: V1.1

Copyright © 2005 ingenia-cat S.L.
Permission is granted to copy and/or distribute this document under the terms of the GNU Free
Documentation License,
Microchip, MPLAB and dsPIC are registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

Content

1 Getting started.. 2
2 ingenia dsPIC bootloader .. 3

2.1 ingenia dsPIC bootloader firmware .. 3
2.1.1 Requisites... 3
2.1.2 How it works? ... 4
2.1.3 Communication Protocol Description.. 4

2.1.3.1 Synchronization ... 5
2.1.3.2 Commands .. 5

2.1.3.2.1 Firmware version command ... 5
2.1.3.2.2 Read command .. 5
2.1.3.2.3 Write command .. 5
2.1.3.2.4 User Program command .. 6
2.1.3.2.5 Unknown command.. 6

2.1.4 How to use it with another dsPIC30F ... 7
2.1.5 Limitations .. 8

2.2 ingenia dsPIC bootloader Graphic User Interface........................... 10
2.2.1 Requisites... 10
2.2.2 Setting up the Hardware... 10

2.2.2.1 Starting ingenia dsPIC bootloader ... 10
2.2.2.2 Setting up the port and the baud rate .. 11
2.2.2.3 Detecting the dsPIC... 11

2.2.3 Loading and Writing programs ... 11
2.2.4 The XML dsPIC list file ... 13

2.2.4.1 Adding a new device ... 13
2.2.4.2 Protecting zones of your dsPIC ... 14

3 ingenia bootloader Source Code .. 15
4 dsPIC list file for iCM4011.. 19
5 References .. 20
6 Revision History ... 21

 ingenia dsPIC boot loader – User Guide

1 Getting started

A serial bootloader is a firmware (software embedded in a hardware device) located into
the non-volatile memory of a Microcontroller Unit (MCU) that allows in-circuit
reprogramming of the device using its standard communication ports.

Usually, the process to program a MCU implies the need of an expensive hardware device.
Such devices, also called programmers, use the special purpose pins of the MCUs to access to
the internal memory. Modifying the voltage applied to these pins, a read or write cycle of the
memory could be performed.

Moreover, the programmers also should incorporate a serial interface in order to allow the
communications with the sender device (normally a Personal Computer (PC)). Together with the
hardware programmer, comes software that helps the final user to send his own firmware
through the serial port of the PC to the MCU.

In the other hand, a serial bootloader is just a piece of code that works with the communication
ports of an MCU and takes advantage of the capacity to write into his own non-volatile memory.

This means that hardware programmer must be used at least once to load it into the MCU.
Then, the user can reprogram the MCU as many times as required without the need of the
hardware programmer.

One of the main advantages of using a serial bootloader in a hardware device that contains a
firmware, is that adds to it the capacity to be easily upgradeable (the user just needs a PC to
update the firmware version). This procedure will save the cost of disassemble and send the
device back to the factory.

info@ingenia-cat.com | www.ingenia-cat.com 2

 ingenia dsPIC boot loader – User Guide

2 ingenia dsPIC bootloader

ingenia has developed a serial bootloader package specially focused on the dsPIC30F family of
Microchip and tested with ingenia Communication Module (iCM4011).

Mainly the bootloader package is divided into two parts:

• An open source firmware code (iBL) and,
• A Windows based Graphical User Interface.

2.1 ingenia dsPIC bootloader firmware

As explained above, the firmware must be loaded into the MCU using a hardware programmer.

ingenia offers a variety of development kits based on dsPIC30F which come with the
bootloader already programmed inside such as iCM4011. Contact ingenia for further
information.

The main features of ingenia’s bootloader firmware are:

• Auto-Baud rate detection – The bootloader has the ability to adjust its own baud rate
to the one used by the sender by mean of a synchronization protocol.

• Possibility of Read and Write Program (Flash) Memory – The bootloader is able to
access to the whole non-volatile memory dedicated to program code.

• Possibility of Read and Write EEPROM Memory - The bootloader is able to access to
the whole non-volatile memory dedicated to data.

• Possibility of Read and Write Configuration Registers - The bootloader is able to
access to the configuration registers zone.

• Optimized assembler code – The firmware is implemented minimizing the used code
size.

2.1.1 Requisites

The system requirements to use ingenia bootloader package is shown in the Figure 1.
This system is composed by the following elements:

• A personal computer with ingenia dsPIC bootloader Graphic User Interface installed.
See 2.2.

• A dsPIC30F Board with the Firmware already loaded it and with a communications
transceiver (i.e. iCM4011).

• The appropriate communication cable (USB, RS232, etc) according to the used
transceiver.

Figure 1: Typical System

info@ingenia-cat.com | www.ingenia-cat.com 3

 ingenia dsPIC boot loader – User Guide

2.1.2 How it works?

Conceptually the firmware can be seen as a flow of states (see Figure 2). Below there is a
description of them and the conditions necessary to move from one to another.

• Reset – When a power-up or a reset occurs the dsPIC* enters in this state and jumps
directly to the Baud Rate Detection.

• Baud rate detection – In this state, synchronization with the sender is performed in
order to compute the used baud rate. After a time (one second if 7.3728 MHz crystal
is used) if no synchronization is established a timeout occurs and the execution goes
to the User program. If the baud rate is detected correctly the execution continues in
the Wait Commands state.

• Wait Commands – During this state the dsPIC listens continuously the UART port. If
a known command is received, the program will jump to the corresponding state
(version, read, write, or user program). Otherwise will stay in this state indefinitely.

• Version – The version of the Firmware is sent through the UART and the execution
returns to Wait Commands state.

• Read – A read memory operation is realized, the result is sent through the UART and
the execution returns to Wait Commands state.

• Write – A write memory operation is realized and the execution returns to Wait
Commands state.

• User Program – The program execution jumps to starting user program address
(0x100) and therefore the bootloader ends.

Figure 2: Flow State Diagram of the bootloader

2.1.3 Communication Protocol Description

As explained in 2.1.2 the firmware is composed by a set of states that can be grouped into:

• Baud rate detection or synchronization between the two devices and
• Commands

Following there is a detailed explanation of the functionality of each group.

info@ingenia-cat.com | www.ingenia-cat.com 4

 ingenia dsPIC boot loader – User Guide

2.1.3.1 Synchronization

In order to achieve a correct synchronization, the remote device should send continuously the
ASCII character ‘U’ (0x55) to the dsPIC. The representation of this character in binary is
01010101b giving the maximum frequency of transitions in a fixed baud rate (See
Figure 3).

Figure 3: Representation of the character 0x55

When the bootloader detects the first rising edge, starts a timer and looks for the next four rising
edges. Once is detected the last edge one, the timer is stopped and the baud rate computed by
means of a simple division.

2.1.3.2 Commands

The frame of all the commands used by the bootloader starts with an Identification Byte. The
answer frame is always ended with acknowledge (ACK = 0x55) or non-acknowledge (NACK =
0xFF) but the Reset command.

2.1.3.2.1 Firmware version command
Check the major and minor version of the firmware.

Command:

Answer:

2.1.3.2.2 Read command
Read the content of a position of the memory, which could be FLASH, EEPROM or Configure
registers addressed by a 24bits word. The answer is also a 24bits data Word.

Command:

Answer:

2.1.3.2.3 Write command
Carries out a write memory operation, which could be FLASH, EEPROM or Configure registers.
The writing operation is done in row mode access (See 2.1.5 for further information), thus you
should specify the initial address, the length of the row and the whole row content.

The frame ends with a CRC that is computed as the 256 module of all the data value addition.

info@ingenia-cat.com | www.ingenia-cat.com 5

 ingenia dsPIC boot loader – User Guide

Command:

Answer:

 or

2.1.3.2.4 User Program command
Force the user program execution, which should be located at address 0x100.

Command:

Answer: None

2.1.3.2.5 Unknown command
When an unknown command is received the bootloader sends a non-acknowledge.
Answer:

info@ingenia-cat.com | www.ingenia-cat.com 6

 ingenia dsPIC boot loader – User Guide

CRC OK?

yes yes

RESET

Compute Baudrate
and configure UART

BYTE
received

from UART?

yes

USER
CODE

Receive Frame
(address + N + data

+ CRC)

no

Receive
address

BDR
received

from UART?
Timeout

no

no

no

User
program

command?

yes

Read
command?

no Write
command?

no

dsPIC sends
ACK

dsPIC sends
memory content

dsPIC sends
NACK

no

Assigns Erase/Write Row
code and number of latches

depending on memory region

Erase Row (except if
Config register)

Load latches

Write Row
dsPIC sends

ACK

Version
command?

dsPIC sends
firmware version

no

 Figure 4: More detailed flowchart of the bootloader

2.1.4 How to use it with another dsPIC30F

The serial bootloader package comes with both, a MPLAB* project and a compiled version of
the assembler file valid for the dsPIC30F4011.

However, if you want to use the firmware with another dsPIC30F family device you should
change the project and recompile it.

These are the steps to follow:

1. Start MPLAB and open the iBL.mcp project.
2. In the option Select Device of the menu Configure, select the device of your system.

(see Figure 5).

info@ingenia-cat.com | www.ingenia-cat.com 7

 ingenia dsPIC boot loader – User Guide

Figure 5: Selection of the device

3. In the project window remove the default linker script (p30f4011.gld) and add the
corresponding to your device (See

4. Figure 6).
5. After that you should be able to recompile the project normally.

Figure 6: Modifying the linker script

2.1.5 Limitations
The bootloader firmware uses by default the alternate UART pins. If you want to use the main
UART pins you should replace the initialization as follows:

info@ingenia-cat.com | www.ingenia-cat.com 8

 ingenia dsPIC boot loader – User Guide

 ; Uart init
mov #0x8420, W0 ; W0 = 0x8420 -> 1000 0100 0010 0000b
mov W0, U1MODE ; Enable UART with Alternate IO, Auto Baud and 8N1

by

; Uart init
mov #0x8020, W0 ; W0 = 0x8020 -> 1000 0000 0010 0000b
mov W0, U1MODE ; Enable UART with Main IO, Auto Baud and 8N1

The writing of the EEPROM and Flash memories uses only the row mode access. Internally,
the firmware erases and writes a whole row. Thus, to perform a correct writing operation the
sender must:

1. Ensure the initial address of writing match an initial row position,
2. Send the data corresponding to the whole row.

info@ingenia-cat.com | www.ingenia-cat.com 9

 ingenia dsPIC boot loader – User Guide

2.2 ingenia dsPIC bootloader Graphic User Interface

ingenia dsPIC bootloader is a graphic user interface that allows loading a program into a dsPIC,
by using iBL (ingenia bootloader) firmware open source and an appropriate hardware platform
(such as iCM).
The following diagram shows this architecture:

Figure 7: architecture for using ingenia dsPIC bootloader

2.2.1 Requisites

Minimum recommended system requirements for ingenia dsPIC bootloader Graphic User
Interface are:

 CPU: Intel Pentium II (366 MHz or higher) with serial port for programming (USB also
available if using iCM4011)

 Memory: 64 MB minimum
 Operating System: Windows 2000/XP

2.2.2 Setting up the Hardware

2.2.2.1 Starting ingenia dsPIC bootloader

When you start ingenia dsPIC bootloader software, a message pops up alerting you to
shutdown your hardware platform (i.e. iCM4011) before start detection process (
Figure 8). You must do this for synchronization reasons between the bootloader firmware saved
into the dsPIC and this software.

Figure 8: Starting ingenia dsPIC bootloader

Click on the ‘OK, my platform is shut down’ button when your platform is completely shut down.

info@ingenia-cat.com | www.ingenia-cat.com 10

 ingenia dsPIC boot loader – User Guide

 Check the ‘don’t remember me again’ option if you don’t want to be alerted next time you
run ingenia dsPIC bootloader.

2.2.2.2 Setting up the port and the baud rate

Before start the detection process of the dsPIC and bootloader firmware, you will have to select
the COM port where you will plug your dsPIC platform and the baud rate to use for transferring
data. The maximum allowed baud rate is 115200bps.

If you are working on a noisy electric environment or your serial cable is long (> 5mts), you may
want to select a slower baud rate for transferring data.

2.2.2.3 Detecting the dsPIC

Once you have configured your COM, you can start the detection process of dsPIC and
bootloader firmware. A message appears (Figure 9) asking you to start your dsPIC platform.

Figure 9: Detecting the dsPIC

Few seconds after you start your platform, if the process succeeds, a message will pop up
identifying the dsPIC detected and its bootloader firmware version.

If the detection process fails, restart the process making sure that your platform is shut down
before detection process starts.
If problems persist, contact ingenia at info@ingenia-cat.com or send us an incidence at:
http://www.ingenia-cat.com/soportecnic.php.

2.2.3 Loading and Writing programs

When you finish the detection process, you can load as many files as you want into your dsPIC.
The loading & writing dialog window pops up (Figure 10).

Do not shut down your platform while loading and writing programs. If you do that, the
results could be unexpected and you will have to restart the above process.

To load a file, click on the folder button and browse until getting it.

info@ingenia-cat.com | www.ingenia-cat.com 11

mailto:info@ingenia-cat.com
http://www.ingenia-cat.com/soportecnic.php?tema=incis

 ingenia dsPIC boot loader – User Guide

Click and browse
for an HEX file

Writeable memory
zones of dsPIC

Figure 10: Loading & Writing Dialog

Supported file formats are Intel 16-bit and 32-bit hexadecimal object file format.

Intel's Hex-record format allows program or data files to be encoded in a printable
(ASCII) format. This allows viewing of the object file with standard tools and easy file transfer
from one computer to another, or between a host and target.

Writeable memory zones of a dsPIC can be divided into:

• program flash
• write data EEPROM
• and configure registers

ingenia dsPIC bootloader shows you the three zones and its associated range address
accordingly with the detected dsPIC.
Once you load the HEX file, it will automatically detect the programmed zones and check them
in the appropriate check boxes.

ingenia dsPIC bootloader may detect possible overwrite conflicts when you load an HEX file.
The following table resumes the possible warning messages and its description

Message Description

• code has data in bootloader
addresses

The HEX contains data in bootloader reserved
region. ingenia dsPIC bootloader will never write on
this zone.

• Your HEX file contains data in
protected 'code' addresses

• Your HEX file contains data in
protected ‘EPROM’ addresses

• Your HEX file contains data in
protected ‘config’ addresses

The HEX file contains data in protected regions. You
can either omit the warning, or skip the writing of the
whole zone.
You can add protect regions of memory within a
writeable zone by editing the ibl_dspiclist.xml file
(see 2.2.4).

info@ingenia-cat.com | www.ingenia-cat.com 12

 ingenia dsPIC boot loader – User Guide

Once you have loaded the file you can start the write process by clicking on the ‘start write’
button.

A progress bar appears showing the write progress. If the write succeeds, the grey button
displayed on the bottom of the dialog, becomes green. Otherwise, becomes red and an error
message will pops up.

2.2.4 The XML dsPIC list file

ingenia dsPIC bootloader can work with dsPIC30F family Digital Signal Controllers (for instance
iCM works with dsPIC30F4011). The detection process of dsPIC (see 2.2.2.3), uses
ibl_dspiclist.xml file to identify the controller and its features. This file is located in the
installation folder and consists in a list of supported dsPICs (or devices).

If the dsPIC that uses your platform doesn’t appear in that list, you can add them obeying the
XML syntax used in the file. Next section will help you to do that. A DTD enclosed with the XML
file will also help you check your XML syntax.
For further information on writing XML files refer to http://www.w3.org/XML/ .

A DTD ("Document Type Definition) is a set of declarations that conform to a particular
markup syntax and that describe a class, or "type", of SGML or XML documents, in terms of
constraints on the structure of those documents.

2.2.4.1 Adding a new device

Each dsPIC is named as a device in the XML dsPIC list file. A device is a description of a
dsPIC. They are characterized by an id and a name. The id is the Microchip device ID (DEVID),
and the name is the Microchip device name.

Within tags <device></device> you have to define three memory zones:

• code or programming,
• data,
• and configuration

Code zone is represented with <memcode> tag.
Data zone is represented with <memdata> tag.
And configuration zone is represented with <memconfig> tag.

In each zone you need to define its start address and end address as an attributes of the tag.
Also within memcode zones you have to specify bootloader region by using <bootloader> tag.
The bootloader region defines the zone where bootloader is located. This zone will be protected
against overwrites, so be sure to define its start and end address properly (you will never be
able to write code in this region).

The XML dsPIC list file comes with bootloader region defined for iCM. If you are using a
different platform, change it accordingly.

The following example shows a complete definition of a device.

info@ingenia-cat.com | www.ingenia-cat.com 13

http://www.w3.org/XML/

 ingenia dsPIC boot loader – User Guide

<device id="0x0101" name="dsPIC4011">
<memcode startaddress="0x000000" endaddress="0x007FFE">
 <boot loader startaddress="0x007EC0" endaddress="0x007FFE"/>
</memcode>
<memdata startaddress="0x7FFC00" endaddress="0x7FFFFE"/>
<memconfig startaddress="0xF80000" endaddress="0xF8000B">
</memconfig>
</device>

2.2.4.2 Protecting zones of your dsPIC

You can protect from overwriting memory regions of your dsPIC by using <protected> tag within
a memory zone.
To do that, specify the startaddress and the endaddress of the protected zone in the attributes
of <protected> tag.

The following example protects the memory region starting at 0xF8000A and ending at
0xF8000B in the configuration zone.

<memconfig startaddress="0xF80000" endaddress="0xF8000B">
 <protected startaddress="0xF8000A" endaddress="0xF8000B"/>
</memconfig>

You can protect as many regions as you want.
If you try to write code on those regions, ingenia dsPIC bootloader will alert you about that and
you will decide whether to proceed or not.

See section 4 for a complete example of an XML dsPIC list file.

info@ingenia-cat.com | www.ingenia-cat.com 14

 ingenia dsPIC boot loader – User Guide

3 ingenia bootloader Source Code

;**
;* *
;* Project: ingenia BootLoader *
;* Module: iBL.s *
;* Description: dsPic bootloader with autobaud detection *
;* Read/Write through UART: PGM, EEPROM & Config registers *
;* Author: Roger Juanpere *
;* *
;* Revision: 1.0 (17-08-05): Initial version *
;* 1.1 (01-02-06): Added support for >32K PGM devices *
;* *
;**
;* ingenia-cat S.L. (c) - www.ingenia-cat.com *
;**

 .include "p30fxxxx.inc"

;**
; Configuration bits:
;**

 config __FOSC, CSW_FSCM_OFF & EC_PLL16 ;Turn off clock switching and
 ;fail-safe clock monitoring and
 ;use the External Clock as the
 ;system clock

 config __FWDT, WDT_OFF ;Turn off Watchdog Timer

 config __FBORPOR, PBOR_ON & BORV_27 & PWRT_16 & MCLR_EN
 ;Set Brown-out Reset voltage and
 ;and set Power-up Timer to 16msecs

 config __FGS, CODE_PROT_OFF ;Set Code Protection Off for the
 ;General Segment

;**
; Program Specific Constants (literals used in code)
;**
 .equ CRC, W4
 .equ ACK, 0x55
 .equ NACK, 0xFF
 .equ USER_ADDRESS, 0x0100
 .equ START_ADDRESS, 0x7D00 ; Relative to 0x0100

 .equ CFG_M, 0xF8
 .equ EE_M, 0x7F

 .equ C_READ, 0x01
 .equ C_WRITE, 0x02
 .equ C_VERSION, 0x03
 .equ C_USER, 0x0F
 .equ MAX_WORD_ROW, 64

 .equ MAJOR_VERSION, 0x01
 .equ MINOR_VERSION, 0x01

;**
; Global Declarations:
;**
 .global __reset ;The label for the first line of code.
 .global recBuf

;**
;Uninitialized variables in X-space in data memory
;**
 .section bss, xmemory
recBuf: .space 2 * MAX_WORD_ROW

;**
;Code Section in Program Memory
;**
 .text ; Start of Code section

info@ingenia-cat.com | www.ingenia-cat.com 15

 ingenia dsPIC boot loader – User Guide

 .org #START_ADDRESS
__reset:
 MOV #__SP_init, W15 ; Initialize the Stack Pointer
 MOV #__SPLIM_init, W0 ; Initialize the Stack Pointer Limit Register
 MOV W0, SPLIM
 NOP ; Add NOP to follow SPLIM initialization

 ; Uart init
 mov #0x8420, W0 ; W0 = 0x8420 -> 1000 0100 0010 0000b
 mov W0, U1MODE ; Enable UART with Alternate IO, AutoBaud and 8N1
 clr U1STA

 ; Timer 3 init
 clr T3CON ; Stops any 16-bit Timer3 operation
 bclr IEC0, #T3IE ; Disable Timer 3 interrupt
 setm PR3 ; Set Timer 3 period to maximum value 0xFFFF
 mov #0x8000, W0 ; Start Timer 3 with 1:1 prescaler and clock source
set to internal cycle
 mov W0, T3CON

 ; Input Capture init
 clr IC1CON ; Turn off Input Capture 1 module
 bset IC1CON, #1 ; Input Capture Mode every risind edge
 bclr IFS0, #IC1IF ; Clear Input Capture flag
 bclr IEC0, #IC1IE ; Disable Input Capture interrupts

 ; Start Autobaud detection
 mov #0x0004, W0 ; W0 = 0x0004
 rcall WaitRising ; Wait until the first Rising edge is detected
 clr TMR3 ; Clear content of the Timer 3 timer register
ByteLoop:
 rcall WaitRising
 dec W0, W0 ; W0--
 bra NZ, ByteLoop ; if W0 != 0 jump to ByteLoop
 bclr T3CON, #TON ; Last Rising edge detected so Stop Timer 3
 mov TMR3, W0 ; W0 = TMR3
 add #0x40, W0 ; For rounding: +64 >> 7 is equal to +0.5
 asr W0, #7, W0 ; W0 = ((Tend - Tini + 64) / 128)
 dec W0, W0 ; W0--

 ; Uart re-init
 mov W0, U1BRG ; U1BRG = W0 -> Configs UART with the detected
baudrate
 bclr U1MODE, #ABAUD ; Disable AutoBaud
 bset U1STA, #UTXEN ; Enable transmition
 bra SendAck

StartFrame:
 btss U1STA, #URXDA ; Wait until a character is received
 bra StartFrame
 mov U1RXREG, W0
 cp.b W0, #C_USER ; Compare received Character with USER character
 btsc SR, #Z
 goto USER_ADDRESS
 cp.b W0, #C_READ ; Compare received Character with READ character
 bra Z, ReadMemCmd
 cp.b W0, #C_WRITE ; Compare received Character with WRITE character
 bra Z, WriteMemCmd
 cp.b W0, #C_VERSION ; Compare received Character with VERSION character
 bra Z, VersionCmd
 bra SendNack ; Unknown character -> Send NACK

VersionCmd:
 mov #MAJOR_VERSION, W0 ; Send Major Version
 mov W0, U1TXREG
 mov #MINOR_VERSION, W0 ; Send Minor Version
 mov W0, U1TXREG
 bra SendAck

ReadMemCmd:
 rcall ReceiveChar ; Receive high byte of the address
 mov W0, TBLPAG ; High address byte
 rcall ReceiveChar ; Receive medium byte of the address
 swap W0
 rcall ReceiveChar ; Receive low byte of the address

 tblrdh [W0], W1 ; Read high word to W1

info@ingenia-cat.com | www.ingenia-cat.com 16

 ingenia dsPIC boot loader – User Guide

 mov W1, U1TXREG ; Send W1 low byte

 tblrdl [W0], W1 ; Read low word to W1
 swap W1
 mov W1, U1TXREG ; Send W1 high byte
 swap W1
 mov W1, U1TXREG ; Send W1 low byte
SendAck:
 mov #ACK, W0 ; Send an ACK character
 bra Send
SendNack:
 mov #NACK, W0 ; Send a KO character
Send:
 mov W0, U1TXREG
 bra StartFrame

WriteMemCmd:
 clr W4 ; Reset W4 = Checkbyte
 rcall ReceiveChar ; Receive high byte of the initial address
 mov W0, TBLPAG ; For latch loading and programming
 mov W0, NVMADRU ; For erase cycle - in program are written auto. from
TBLPAG
 rcall ReceiveChar ; Receive medium byte of the initial address
 mov.b WREG, NVMADR + 1
 rcall ReceiveChar ; Receive low byte of the initial address
 mov.b WREG, NVMADR

 rcall ReceiveChar ; Receive the number of bytes to be received
 mov W0, W3
 mov #recBuf, W2 ; W2 = recBuf
FillBufLoop:
 rcall ReceiveChar
 mov.b W0, [W2++] ; Move received byte to recBuf
 dec W3, W3
 bra nz, FillBufLoop ; Fill reception buffer

 cp0.b W4 ; Check (INTEL HEX8 Checksum - Sum modulo 256)
 bra nz, SendNack ; if Checkbyte != 0 jump to SendNack
 mov #recBuf, W2 ; W2 = recBuf
 mov NVMADR, W5 ; Use W5 as low word address

 mov #CFG_M, W0 ; Check if destination is Config Memory
 cp.b TBLPAG
 bra nz, noCFM

 mov #0x4008, W8 ; Assigns Write Config Row Code - Config Mem doesn't
need to be erased
 mov #1, W3 ; Assigns Number of 16bits words per Row
 bra LoadLatch
noCFM:
 mov #EE_M, W0 ; Check if destination is EEPROM Memory
 cp.b TBLPAG
 bra NZ, noEEM
 mov #0x4075, W0 ; Assigns Erase EEPROM Row Code
 mov #0x4005, W8 ; Assigns Write EEPROM Row Code
 mov #32, W3 ; Assigns Number of 16bits word per Row
 bra StartWritingCycle ; Erase and Write Memory
noEEM:
 mov #0x4071, W0 ; Assigns Erase PGM Row Code
 mov #0x4001, W8 ; Assigns Write PGM Row Code
 mov #64, W3 ; Assigns Number of 16bits word per Row (32instr -
64word16)

StartWritingCycle:
 rcall WriteKey ; Erase selected Row
LoadLatch:
 tblwtl [W2++], [W5] ; Load low word to latch
 dec W3, W3
 bra Z, EndLatch
 tblwth [W2++], [W5++] ; Load high word to latch
 dec W3, W3 ; Repeat until whole row is loaded
 bra NZ, LoadLatch
EndLatch:
 mov W8, W0 ; Write selected Row
 rcall WriteKey
 bra SendAck ; Send an ACK character

info@ingenia-cat.com | www.ingenia-cat.com 17

 ingenia dsPIC boot loader – User Guide

;**
;Procedures
;**
WaitRising:
 mov #0x5A, W2 ; W2 = 0x5A
MajorLRise:
 setm W1 ; W1 = 0xFFFF
MinorLRise:
 btsc IFS0, #IC1IF ; Rising edge detected?
 bra EndRising ; Yes -> Jump to finish detection
 dec W1, W1 ; W1--
 bra NZ, MinorLRise ; if W1 != 0 jump MinorLRise
 dec W2, W2 ; W2--
 bra NZ, MajorLRise ; if W2 != 0 jump MajorLRise
 goto USER_ADDRESS ; Timeout aprox. = 0x5A * 0xFFFF * 5 clocks -> Jump to
user soft

EndRising:
 bclr IFS0, #IC1IF ; Clear Interrupt Flag
 return

;**
ReceiveChar:
 mov #0xFFFF, W10 ; W10 = 0xFFFF
MajorLChar:
 setm W11 ; W11 = 0xFFFF
MinorLChar:
 btsc U1STA, #URXDA ; Character received ?
 bra EndReceiveChar ; Yes -> Jump to Finish reception
 dec W11, W11 ; W1--
 bra NZ, MinorLChar ; if W1 != 0 jump MinorLChar
 dec W10, W10 ; W2--
 bra NZ, MajorLChar ; if W2 != 0 jump MajorLChar
 MOV #__SP_init, W15 ; Initialize Stack Pointer
 bra SendNack ; Timeout aprox. = 0xFFFF * 0xFFFF * 5 clocks -> Jump
to Send Nack
EndReceiveChar:
 mov.b U1RXREG, WREG ; W0 = U1RXREG
 add.b W4, W0, W4 ; Checkbyte += W0 -> Performs a Sum modulo 256
checksum (INTEL HEX8)
 return

;**
WriteKey:
 mov W0, NVMCON
 mov #0x55, W0
 mov W0, NVMKEY
 mov #0xAA, W0
 mov W0, NVMKEY
 bset NVMCON, #WR ; Start Writing
 nop
 nop
WaitWriting:
 btsc NVMCON, #WR ; WR or WREN - Wait until operation is finished
 bra WaitWriting
 return

;--------End of All Code Sections ---

.end ; End of program code in this file

info@ingenia-cat.com | www.ingenia-cat.com 18

 ingenia dsPIC boot loader – User Guide

4 dsPIC list file for iCM4011

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE devices SYSTEM "ingeniadspicbootloader.dtd">
<devices>
 <device id="0x01C1" name="dsPIC3011">
 <memcode startaddress="0x000000" endaddress="0x003FFE">
 <bootloader startaddress="0x003E00" endaddress="0x003FFE"/>
 </memcode>
 <memdata startaddress="0x7FFC00" endaddress="0x7FFFFE"/>
 <memconfig startaddress="0xF80000" endaddress="0xF8000B">
 <protected startaddress="0xF8000A" endaddress="0xF8000B"/>
 </memconfig>
 </device>

 <device id="0x0101" name="dsPIC4011">
 <memcode startaddress="0x000000" endaddress="0x007FFE">
 <bootloader startaddress="0x007E00" endaddress="0x007FFE"/>
 </memcode>
 <memdata startaddress="0x7FFC00" endaddress="0x7FFFFE"/>
 <memconfig startaddress="0xF80000" endaddress="0xF8000B">
 <protected startaddress="0xF8000A" endaddress="0xF8000B"/>
 </memconfig>
 </device>

 <device id="0x0080" name="dsPIC5011">
 <memcode startaddress="0x000000" endaddress="0x00AFFE">
 <bootloader startaddress="0x00AE00" endaddress="0x00AFFE"/>
 </memcode>
 <memdata startaddress="0x7FFC00" endaddress="0x7FFFFE"/>
 <memconfig startaddress="0xF80000" endaddress="0xF8000B">
 <protected startaddress="0xF8000A" endaddress="0xF8000B"/>
 </memconfig>
 </device>

 <device id="0x0198" name="dsPIC6014">
 <memcode startaddress="0x000000" endaddress="0x017FFE">
 <bootloader startaddress="0x017E00" endaddress="0x017FFE"/>
 </memcode>
 <memdata startaddress="0x7FF000" endaddress="0x7FFFFE"/>
 <memconfig startaddress="0xF80000" endaddress="0xF8000B">
 <protected startaddress="0xF8000A" endaddress="0xF8000B"/>
 </memconfig>
 </device>
</devices>

info@ingenia-cat.com | www.ingenia-cat.com 19

 ingenia dsPIC boot loader – User Guide

5 References

- “dsPIC30F Family Reference Manual” from Microchip Technology Inc (DS70046).
- “dsPIC30F Flash Programming Specification” from Microchip Technology Inc. (DS70102).
- “dsPIC30F/33F Programmer’s Reference Manual” from Microchip Technology Inc.

(DS70157)
- “iCM4011 Product Manual” from ingenia-cat S.L.

info@ingenia-cat.com | www.ingenia-cat.com 20

 ingenia dsPIC boot loader – User Guide

6 Revision History

Comments Date Release

First Release 01/12/2005 1.0

Style document revision
Updated ingenia bootloader Souce Code
Updated dsPIC list file for iCM4011

03/02/2005 1.1

info@ingenia-cat.com | www.ingenia-cat.com 21

	Getting started
	ingenia dsPIC bootloader
	ingenia dsPIC bootloader firmware
	Requisites
	How it works?
	Communication Protocol Description
	Synchronization
	Commands
	Firmware version command
	Read command
	Write command
	User Program command
	Unknown command

	How to use it with another dsPIC30F
	Limitations

	ingenia dsPIC bootloader Graphic User Interface
	Requisites
	Setting up the Hardware
	Starting ingenia dsPIC bootloader
	Setting up the port and the baud rate
	Detecting the dsPIC

	Loading and Writing programs
	The XML dsPIC list file
	Adding a new device
	Protecting zones of your dsPIC

	ingenia bootloader Source Code
	dsPIC list file for iCM4011
	References
	Revision History

